Triangle-free induced subgraphs of the unitary polarity graph
نویسندگان
چکیده
منابع مشابه
No Dense Subgraphs Appear in the Triangle-free Graph Process
Consider the triangle-free graph process, which starts from the empty graph on n vertices and in every step an edge is added that is chosen uniformly at random from all non-edges that do not form a triangle with the existing edges. We will show that there exists a constant c such that asymptotically almost surely no copy of any fixed finite triangle-free graph on k vertices with at least ck edg...
متن کاملTriangle-free subgraphs in the triangle-free process
Consider the triangle-free process, which is defined as follows. Start with G(0), an empty graph on n vertices. Given G(i − 1), let G(i) = G(i − 1) ∪ {g(i)}, where g(i) is an edge that is chosen uniformly at random from the set of edges that are not in G(i − 1) and can be added to G(i − 1) without creating a triangle. The process ends once a maximal triangle-free graph has been created. Let H b...
متن کاملTriangle-free subgraphs at the triangle-free process
We consider the triangle-free process: given an integer n, start by taking a uniformly random ordering of the edges of the complete n-vertex graph Kn. Then, traverse the ordered edges and add each traversed edge to an (initially empty) evolving graph unless its addition creates a triangle. We study the evolving graph at around the time where Θ(n) edges have been traversed for any fixed ε ∈ (0, ...
متن کاملInduced 2-Degenerate Subgraphs of Triangle-Free Planar Graphs
A graph is k-degenerate if every subgraph has minimum degree at most k. We provide lower bounds on the size of a maximum induced 2-degenerate subgraph in a triangle-free planar graph. We denote the size of a maximum induced 2-degenerate subgraph of a graph G by α2(G). We prove that if G is a connected triangle-free planar graph with n vertices and m edges, then α2(G) ≥ 6n−m−1 5 . By Euler’s For...
متن کاملTriangle-Free Subgraphs of Random Graphs
The Andrásfai–Erdős–Sós Theorem [2] states that all triangle-free graphs on n vertices with minimum degree strictly greater than 2n/5 are bipartite. Thomassen [11] proved that when the minimum degree condition is relaxed to ( 3 + ε)n, the result is still guaranteed to be rε-partite, where rε does not depend on n. We prove best possible random graph analogues of these theorems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2018
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2018.04.010